Seminar: Fred Chong

Seminar: Fred Chong

Seminar: Fred Chong

October 25, 2019, 2:00 pm to 3:00 pm

Huge Dempster Pavillion Room 301 (DMP 301) 6245 Agronomy Road

Resource-Efficient Quantum Computing by Breaking Abstractions

Fred Chong, Seymour Goodman Professor, University of Chicago
Abstract:  

Quantum computing is at an inflection point, where 79-qubit (quantum bit) machines are being tested, 100-qubit machines are just around the corner, and even 1000-qubit machines are perhaps only a few years away.  These machines have the potential to fundamentally change our concept of what is computable and demonstrate practical applications in areas such as quantum chemistry, optimization, and quantum simulation.

Yet a significant resource gap remains between practical quantum algorithms and real machines.  A promising approach to closing this gap is to selectively expose to programming languages and compilers some of the key physical properties of of emerging quantum technologies.  I will describe some of our recent work that focuses on compilation techniques that break traditional abstractions, including compiling directly to analog control pulses, compiling for machine variations, and compiling with ternary quantum bits.  I will also describe other important challenges to be solved on the road to practical quantum computing.

Bio:  Fred Chong is the Seymour Goodman Professor in the Department of Computer Science at the University of Chicago. He is also Lead Principal Investigator for the EPiQC Project (Enabling Practical-scale Quantum Computing), an NSF Expedition in Computing. Chong received his Ph.D. from MIT in 1996 and was a faculty member and Chancellor’s fellow at UC Davis from 1997-2005. He was also a Professor of Computer Science, Director of Computer Engineering, and Director of the Greenscale Center for Energy-Efficient Computing at UCSB from 2005-2015. He is a recipient of the NSF CAREER award, the Intel Outstanding Researcher Award, and 6 best paper awards. His research interests include emerging technologies for computing, quantum computing, multicore and embedded architectures, computer security, and sustainable computing.  Prof. Chong has been funded by NSF, DOE, Intel, Google, AFOSR, IARPA, DARPA, Mitsubishi, Altera and Xilinx. He has led or co-led over $40M in awarded research, and been co-PI on an additional $38M.

Event Type


UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Caret An arrowhead indicating direction. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Arrow in Circle An arrow indicating direction. Chats Two speech clouds. Facebook The logo for the Facebook social media service. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. External Link An arrow entering a square. Linkedin The logo for the LinkedIn social media service. Location Pin A map location pin. Mail An envelope. Menu Three horizontal lines indicating a menu. Minus A minus sign. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. Search A magnifying glass. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.