Robert Raussendorf
Associate Professor
Physics and Astronomy
Faculty of Science
My research interest is in quantum computation, in particular computational models, quantum fault-tolerance and foundational aspects. I have invented the one-way quantum computer (QCc) jointly with Hans Briegel (UK patent GB 2382892, US patent 7,277,872). The QCc is a scheme of universal quantum computation by local measurements on a multi-particle entangled quantum state, the so-called cluster state. Quantum information is written into the cluster state, processed and read out by one-qubit measurements only. As the computation proceeds, the entanglement in the resource cluster state is progressively destroyed. Measurements replace unitary evolution as the elementary process driving a quantum computation.
I also work in the field of fault-tolerant quantum computation. Error-correction is what a large-scale quantum computer spends most of its computation time with, and it is important to devise error-correction methods which allow for a high error threshold at a moderate operational overhead. My research interest is in fault-tolerance for quantum systems with a geometrical constraint, e.g. low-dimensional lattice systems, and in topological methods.
With my collaborators Jim Harrington and Kovid Goyal, I have presented a fault-tolerant one-way quantum computer [arXiv:quant-ph/0510135], and have described a method for fault-tolerant quantum computation in a two-dimensional lattice of qubits requiring local and translation-invariant nearest-neighbor interaction only [arXiv:quant-ph/0610082], [arXiv:quant-ph/0703143]. For our method, we have obtained the highest known threshold for a two-dimensional architecture with nearest-neighbor interaction, namely 0.75 percent. A high value of the error threshold is important for realization of fault-tolerant quantum computation because it relaxes the accuracy requirements of the experiment. The imposed constraint of nearest-neighbor interaction in a two-dimensional qubit array is suggested by experimental reality: Many physical systems envisioned for the realization of a quantum computer are confined to two dimensions and prefer short-range interaction, for example optical lattices, arrays of superconducting qubits and quantum dots.
Selected publications
- Tzu-Chieh Wei, Ian Affleck, Robert Raussendorf, The 2D AKLT state is a universal quantum computational resource, Phys. Rev. Lett. 106, 070501 (2011).
-
R. Raussendorf and J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions, arXiv:quant-ph/0610082, Phys. Rev. Lett. 98, 150504 (2007).
-
R. Raussendorf and H.-J. Briegel, Computational model underlying the one-way quantum computer, arXiv:quant-ph/0108067, Quant. Inf. Comp. 6, 443 (2002).
-
R. Raussendorf and H.-J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).